Module backtrader.indicators.ema
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from . import MovingAverageBase, ExponentialSmoothing
class ExponentialMovingAverage(MovingAverageBase):
'''
A Moving Average that smoothes data exponentially over time.
It is a subclass of SmoothingMovingAverage.
- self.smfactor -> 2 / (1 + period)
- self.smfactor1 -> `1 - self.smfactor`
Formula:
- movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor
See also:
- http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
'''
alias = ('EMA', 'MovingAverageExponential',)
lines = ('ema',)
def __init__(self):
# Before super to ensure mixins (right-hand side in subclassing)
# can see the assignment operation and operate on the line
self.lines[0] = es = ExponentialSmoothing(
self.data,
period=self.p.period,
alpha=2.0 / (1.0 + self.p.period))
self.alpha, self.alpha1 = es.alpha, es.alpha1
super(ExponentialMovingAverage, self).__init__()
Classes
class EMA
-
A Moving Average that smoothes data exponentially over time.
It is a subclass of SmoothingMovingAverage.
- self.smfactor -> 2 / (1 + period)
- self.smfactor1 ->
1 - self.smfactor
Formula
- movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor
See also: - http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
Ancestors
- ExponentialMovingAverage
- MovingAverageBase
- Indicator
- IndicatorBase
- DataAccessor
- LineIterator
- LineSeries
- LineMultiple
- LineRoot
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class ExponentialMovingAverage
-
A Moving Average that smoothes data exponentially over time.
It is a subclass of SmoothingMovingAverage.
- self.smfactor -> 2 / (1 + period)
- self.smfactor1 ->
1 - self.smfactor
Formula
- movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor
See also: - http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
Expand source code
class ExponentialMovingAverage(MovingAverageBase): ''' A Moving Average that smoothes data exponentially over time. It is a subclass of SmoothingMovingAverage. - self.smfactor -> 2 / (1 + period) - self.smfactor1 -> `1 - self.smfactor` Formula: - movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor See also: - http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average ''' alias = ('EMA', 'MovingAverageExponential',) lines = ('ema',) def __init__(self): # Before super to ensure mixins (right-hand side in subclassing) # can see the assignment operation and operate on the line self.lines[0] = es = ExponentialSmoothing( self.data, period=self.p.period, alpha=2.0 / (1.0 + self.p.period)) self.alpha, self.alpha1 = es.alpha, es.alpha1 super(ExponentialMovingAverage, self).__init__()
Ancestors
- MovingAverageBase
- Indicator
- IndicatorBase
- DataAccessor
- LineIterator
- LineSeries
- LineMultiple
- LineRoot
Subclasses
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class MovingAverageExponential
-
A Moving Average that smoothes data exponentially over time.
It is a subclass of SmoothingMovingAverage.
- self.smfactor -> 2 / (1 + period)
- self.smfactor1 ->
1 - self.smfactor
Formula
- movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor
See also: - http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
Ancestors
- ExponentialMovingAverage
- MovingAverageBase
- Indicator
- IndicatorBase
- DataAccessor
- LineIterator
- LineSeries
- LineMultiple
- LineRoot
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members