Module backtrader.lineiterator
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import collections
import operator
import sys
from .utils.py3 import map, range, zip, with_metaclass, string_types
from .utils import DotDict
from .lineroot import LineRoot, LineSingle
from .linebuffer import LineActions, LineNum
from .lineseries import LineSeries, LineSeriesMaker
from .dataseries import DataSeries
from . import metabase
class MetaLineIterator(LineSeries.__class__):
def donew(cls, *args, **kwargs):
_obj, args, kwargs = \
super(MetaLineIterator, cls).donew(*args, **kwargs)
# Prepare to hold children that need to be calculated and
# influence minperiod - Moved here to support LineNum below
_obj._lineiterators = collections.defaultdict(list)
# Scan args for datas ... if none are found,
# use the _owner (to have a clock)
mindatas = _obj._mindatas
lastarg = 0
_obj.datas = []
for arg in args:
if isinstance(arg, LineRoot):
_obj.datas.append(LineSeriesMaker(arg))
elif not mindatas:
break # found not data and must not be collected
else:
try:
_obj.datas.append(LineSeriesMaker(LineNum(arg)))
except:
# Not a LineNum and is not a LineSeries - bail out
break
mindatas = max(0, mindatas - 1)
lastarg += 1
newargs = args[lastarg:]
# If no datas have been passed to an indicator ... use the
# main datas of the owner, easing up adding "self.data" ...
if not _obj.datas and isinstance(_obj, (IndicatorBase, ObserverBase)):
_obj.datas = _obj._owner.datas[0:mindatas]
# Create a dictionary to be able to check for presence
# lists in python use "==" operator when testing for presence with "in"
# which doesn't really check for presence but for equality
_obj.ddatas = {x: None for x in _obj.datas}
# For each found data add access member -
# for the first data 2 (data and data0)
if _obj.datas:
_obj.data = data = _obj.datas[0]
for l, line in enumerate(data.lines):
linealias = data._getlinealias(l)
if linealias:
setattr(_obj, 'data_%s' % linealias, line)
setattr(_obj, 'data_%d' % l, line)
for d, data in enumerate(_obj.datas):
setattr(_obj, 'data%d' % d, data)
for l, line in enumerate(data.lines):
linealias = data._getlinealias(l)
if linealias:
setattr(_obj, 'data%d_%s' % (d, linealias), line)
setattr(_obj, 'data%d_%d' % (d, l), line)
# Parameter values have now been set before __init__
_obj.dnames = DotDict([(d._name, d)
for d in _obj.datas if getattr(d, '_name', '')])
return _obj, newargs, kwargs
def dopreinit(cls, _obj, *args, **kwargs):
_obj, args, kwargs = \
super(MetaLineIterator, cls).dopreinit(_obj, *args, **kwargs)
# if no datas were found use, use the _owner (to have a clock)
_obj.datas = _obj.datas or [_obj._owner]
# 1st data source is our ticking clock
_obj._clock = _obj.datas[0]
# To automatically set the period Start by scanning the found datas
# No calculation can take place until all datas have yielded "data"
# A data could be an indicator and it could take x bars until
# something is produced
_obj._minperiod = \
max([x._minperiod for x in _obj.datas] or [_obj._minperiod])
# The lines carry at least the same minperiod as
# that provided by the datas
for line in _obj.lines:
line.addminperiod(_obj._minperiod)
return _obj, args, kwargs
def dopostinit(cls, _obj, *args, **kwargs):
_obj, args, kwargs = \
super(MetaLineIterator, cls).dopostinit(_obj, *args, **kwargs)
# my minperiod is as large as the minperiod of my lines
_obj._minperiod = max([x._minperiod for x in _obj.lines])
# Recalc the period
_obj._periodrecalc()
# Register (my)self as indicator to owner once
# _minperiod has been calculated
if _obj._owner is not None:
_obj._owner.addindicator(_obj)
return _obj, args, kwargs
class LineIterator(with_metaclass(MetaLineIterator, LineSeries)):
_nextforce = False # force cerebro to run in next mode (runonce=False)
_mindatas = 1
_ltype = LineSeries.IndType
plotinfo = dict(plot=True,
subplot=True,
plotname='',
plotskip=False,
plotabove=False,
plotlinelabels=False,
plotlinevalues=True,
plotvaluetags=True,
plotymargin=0.0,
plotyhlines=[],
plotyticks=[],
plothlines=[],
plotforce=False,
plotmaster=None,)
def _periodrecalc(self):
# last check in case not all lineiterators were assigned to
# lines (directly or indirectly after some operations)
# An example is Kaufman's Adaptive Moving Average
indicators = self._lineiterators[LineIterator.IndType]
indperiods = [ind._minperiod for ind in indicators]
indminperiod = max(indperiods or [self._minperiod])
self.updateminperiod(indminperiod)
def _stage2(self):
super(LineIterator, self)._stage2()
for data in self.datas:
data._stage2()
for lineiterators in self._lineiterators.values():
for lineiterator in lineiterators:
lineiterator._stage2()
def _stage1(self):
super(LineIterator, self)._stage1()
for data in self.datas:
data._stage1()
for lineiterators in self._lineiterators.values():
for lineiterator in lineiterators:
lineiterator._stage1()
def getindicators(self):
return self._lineiterators[LineIterator.IndType]
def getindicators_lines(self):
return [x for x in self._lineiterators[LineIterator.IndType]
if hasattr(x.lines, 'getlinealiases')]
def getobservers(self):
return self._lineiterators[LineIterator.ObsType]
def addindicator(self, indicator):
# store in right queue
self._lineiterators[indicator._ltype].append(indicator)
# use getattr because line buffers don't have this attribute
if getattr(indicator, '_nextforce', False):
# the indicator needs runonce=False
o = self
while o is not None:
if o._ltype == LineIterator.StratType:
o.cerebro._disable_runonce()
break
o = o._owner # move up the hierarchy
def bindlines(self, owner=None, own=None):
if not owner:
owner = 0
if isinstance(owner, string_types):
owner = [owner]
elif not isinstance(owner, collections.Iterable):
owner = [owner]
if not own:
own = range(len(owner))
if isinstance(own, string_types):
own = [own]
elif not isinstance(own, collections.Iterable):
own = [own]
for lineowner, lineown in zip(owner, own):
if isinstance(lineowner, string_types):
lownerref = getattr(self._owner.lines, lineowner)
else:
lownerref = self._owner.lines[lineowner]
if isinstance(lineown, string_types):
lownref = getattr(self.lines, lineown)
else:
lownref = self.lines[lineown]
lownref.addbinding(lownerref)
return self
# Alias which may be more readable
bind2lines = bindlines
bind2line = bind2lines
def _next(self):
clock_len = self._clk_update()
for indicator in self._lineiterators[LineIterator.IndType]:
indicator._next()
self._notify()
if self._ltype == LineIterator.StratType:
# supporting datas with different lengths
minperstatus = self._getminperstatus()
if minperstatus < 0:
self.next()
elif minperstatus == 0:
self.nextstart() # only called for the 1st value
else:
self.prenext()
else:
# assume indicators and others operate on same length datas
# although the above operation can be generalized
if clock_len > self._minperiod:
self.next()
elif clock_len == self._minperiod:
self.nextstart() # only called for the 1st value
elif clock_len:
self.prenext()
def _clk_update(self):
clock_len = len(self._clock)
if clock_len != len(self):
self.forward()
return clock_len
def _once(self):
self.forward(size=self._clock.buflen())
for indicator in self._lineiterators[LineIterator.IndType]:
indicator._once()
for observer in self._lineiterators[LineIterator.ObsType]:
observer.forward(size=self.buflen())
for data in self.datas:
data.home()
for indicator in self._lineiterators[LineIterator.IndType]:
indicator.home()
for observer in self._lineiterators[LineIterator.ObsType]:
observer.home()
self.home()
# These 3 remain empty for a strategy and therefore play no role
# because a strategy will always be executed on a next basis
# indicators are each called with its min period
self.preonce(0, self._minperiod - 1)
self.oncestart(self._minperiod - 1, self._minperiod)
self.once(self._minperiod, self.buflen())
for line in self.lines:
line.oncebinding()
def preonce(self, start, end):
pass
def oncestart(self, start, end):
self.once(start, end)
def once(self, start, end):
pass
def prenext(self):
'''
This method will be called before the minimum period of all
datas/indicators have been meet for the strategy to start executing
'''
pass
def nextstart(self):
'''
This method will be called once, exactly when the minimum period for
all datas/indicators have been meet. The default behavior is to call
next
'''
# Called once for 1st full calculation - defaults to regular next
self.next()
def next(self):
'''
This method will be called for all remaining data points when the
minimum period for all datas/indicators have been meet.
'''
pass
def _addnotification(self, *args, **kwargs):
pass
def _notify(self):
pass
def _plotinit(self):
pass
def qbuffer(self, savemem=0):
if savemem:
for line in self.lines:
line.qbuffer()
# If called, anything under it, must save
for obj in self._lineiterators[self.IndType]:
obj.qbuffer(savemem=1)
# Tell datas to adjust buffer to minimum period
for data in self.datas:
data.minbuffer(self._minperiod)
# This 3 subclasses can be used for identification purposes within LineIterator
# or even outside (like in LineObservers)
# for the 3 subbranches without generating circular import references
class DataAccessor(LineIterator):
PriceClose = DataSeries.Close
PriceLow = DataSeries.Low
PriceHigh = DataSeries.High
PriceOpen = DataSeries.Open
PriceVolume = DataSeries.Volume
PriceOpenInteres = DataSeries.OpenInterest
PriceDateTime = DataSeries.DateTime
class IndicatorBase(DataAccessor):
pass
class ObserverBase(DataAccessor):
pass
class StrategyBase(DataAccessor):
pass
# Utility class to couple lines/lineiterators which may have different lengths
# Will only work when runonce=False is passed to Cerebro
class SingleCoupler(LineActions):
def __init__(self, cdata, clock=None):
super(SingleCoupler, self).__init__()
self._clock = clock if clock is not None else self._owner
self.cdata = cdata
self.dlen = 0
self.val = float('NaN')
def next(self):
if len(self.cdata) > self.dlen:
self.val = self.cdata[0]
self.dlen += 1
self[0] = self.val
class MultiCoupler(LineIterator):
_ltype = LineIterator.IndType
def __init__(self):
super(MultiCoupler, self).__init__()
self.dlen = 0
self.dsize = self.fullsize() # shorcut for number of lines
self.dvals = [float('NaN')] * self.dsize
def next(self):
if len(self.data) > self.dlen:
self.dlen += 1
for i in range(self.dsize):
self.dvals[i] = self.data.lines[i][0]
for i in range(self.dsize):
self.lines[i][0] = self.dvals[i]
def LinesCoupler(cdata, clock=None, **kwargs):
if isinstance(cdata, LineSingle):
return SingleCoupler(cdata, clock) # return for single line
cdatacls = cdata.__class__ # copy important structures before creation
try:
LinesCoupler.counter += 1 # counter for unique class name
except AttributeError:
LinesCoupler.counter = 0
# Prepare a MultiCoupler subclass
nclsname = str('LinesCoupler_%d' % LinesCoupler.counter)
ncls = type(nclsname, (MultiCoupler,), {})
thismod = sys.modules[LinesCoupler.__module__]
setattr(thismod, ncls.__name__, ncls)
# Replace lines et al., to get a sensible clone
ncls.lines = cdatacls.lines
ncls.params = cdatacls.params
ncls.plotinfo = cdatacls.plotinfo
ncls.plotlines = cdatacls.plotlines
obj = ncls(cdata, **kwargs) # instantiate
# The clock is set here to avoid it being interpreted as a data by the
# LineIterator background scanning code
if clock is None:
clock = getattr(cdata, '_clock', None)
if clock is not None:
nclock = getattr(clock, '_clock', None)
if nclock is not None:
clock = nclock
else:
nclock = getattr(clock, 'data', None)
if nclock is not None:
clock = nclock
if clock is None:
clock = obj._owner
obj._clock = clock
return obj
# Add an alias (which seems a lot more sensible for "Single Line" lines
LineCoupler = LinesCoupler
Functions
def LineCoupler(cdata, clock=None, **kwargs)
-
Expand source code
def LinesCoupler(cdata, clock=None, **kwargs): if isinstance(cdata, LineSingle): return SingleCoupler(cdata, clock) # return for single line cdatacls = cdata.__class__ # copy important structures before creation try: LinesCoupler.counter += 1 # counter for unique class name except AttributeError: LinesCoupler.counter = 0 # Prepare a MultiCoupler subclass nclsname = str('LinesCoupler_%d' % LinesCoupler.counter) ncls = type(nclsname, (MultiCoupler,), {}) thismod = sys.modules[LinesCoupler.__module__] setattr(thismod, ncls.__name__, ncls) # Replace lines et al., to get a sensible clone ncls.lines = cdatacls.lines ncls.params = cdatacls.params ncls.plotinfo = cdatacls.plotinfo ncls.plotlines = cdatacls.plotlines obj = ncls(cdata, **kwargs) # instantiate # The clock is set here to avoid it being interpreted as a data by the # LineIterator background scanning code if clock is None: clock = getattr(cdata, '_clock', None) if clock is not None: nclock = getattr(clock, '_clock', None) if nclock is not None: clock = nclock else: nclock = getattr(clock, 'data', None) if nclock is not None: clock = nclock if clock is None: clock = obj._owner obj._clock = clock return obj
def LinesCoupler(cdata, clock=None, **kwargs)
-
Expand source code
def LinesCoupler(cdata, clock=None, **kwargs): if isinstance(cdata, LineSingle): return SingleCoupler(cdata, clock) # return for single line cdatacls = cdata.__class__ # copy important structures before creation try: LinesCoupler.counter += 1 # counter for unique class name except AttributeError: LinesCoupler.counter = 0 # Prepare a MultiCoupler subclass nclsname = str('LinesCoupler_%d' % LinesCoupler.counter) ncls = type(nclsname, (MultiCoupler,), {}) thismod = sys.modules[LinesCoupler.__module__] setattr(thismod, ncls.__name__, ncls) # Replace lines et al., to get a sensible clone ncls.lines = cdatacls.lines ncls.params = cdatacls.params ncls.plotinfo = cdatacls.plotinfo ncls.plotlines = cdatacls.plotlines obj = ncls(cdata, **kwargs) # instantiate # The clock is set here to avoid it being interpreted as a data by the # LineIterator background scanning code if clock is None: clock = getattr(cdata, '_clock', None) if clock is not None: nclock = getattr(clock, '_clock', None) if nclock is not None: clock = nclock else: nclock = getattr(clock, 'data', None) if nclock is not None: clock = nclock if clock is None: clock = obj._owner obj._clock = clock return obj
Classes
class DataAccessor (*args, **kwargs)
-
Base class for LineXXX instances that hold more than one line
Expand source code
class DataAccessor(LineIterator): PriceClose = DataSeries.Close PriceLow = DataSeries.Low PriceHigh = DataSeries.High PriceOpen = DataSeries.Open PriceVolume = DataSeries.Volume PriceOpenInteres = DataSeries.OpenInterest PriceDateTime = DataSeries.DateTime
Ancestors
Subclasses
Class variables
var PriceClose
var PriceDateTime
var PriceHigh
var PriceLow
var PriceOpen
var PriceOpenInteres
var PriceVolume
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class IndicatorBase (*args, **kwargs)
-
Base class for LineXXX instances that hold more than one line
Expand source code
class IndicatorBase(DataAccessor): pass
Ancestors
Subclasses
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class LineIterator (*args, **kwargs)
-
Base class for LineXXX instances that hold more than one line
Expand source code
class LineIterator(with_metaclass(MetaLineIterator, LineSeries)): _nextforce = False # force cerebro to run in next mode (runonce=False) _mindatas = 1 _ltype = LineSeries.IndType plotinfo = dict(plot=True, subplot=True, plotname='', plotskip=False, plotabove=False, plotlinelabels=False, plotlinevalues=True, plotvaluetags=True, plotymargin=0.0, plotyhlines=[], plotyticks=[], plothlines=[], plotforce=False, plotmaster=None,) def _periodrecalc(self): # last check in case not all lineiterators were assigned to # lines (directly or indirectly after some operations) # An example is Kaufman's Adaptive Moving Average indicators = self._lineiterators[LineIterator.IndType] indperiods = [ind._minperiod for ind in indicators] indminperiod = max(indperiods or [self._minperiod]) self.updateminperiod(indminperiod) def _stage2(self): super(LineIterator, self)._stage2() for data in self.datas: data._stage2() for lineiterators in self._lineiterators.values(): for lineiterator in lineiterators: lineiterator._stage2() def _stage1(self): super(LineIterator, self)._stage1() for data in self.datas: data._stage1() for lineiterators in self._lineiterators.values(): for lineiterator in lineiterators: lineiterator._stage1() def getindicators(self): return self._lineiterators[LineIterator.IndType] def getindicators_lines(self): return [x for x in self._lineiterators[LineIterator.IndType] if hasattr(x.lines, 'getlinealiases')] def getobservers(self): return self._lineiterators[LineIterator.ObsType] def addindicator(self, indicator): # store in right queue self._lineiterators[indicator._ltype].append(indicator) # use getattr because line buffers don't have this attribute if getattr(indicator, '_nextforce', False): # the indicator needs runonce=False o = self while o is not None: if o._ltype == LineIterator.StratType: o.cerebro._disable_runonce() break o = o._owner # move up the hierarchy def bindlines(self, owner=None, own=None): if not owner: owner = 0 if isinstance(owner, string_types): owner = [owner] elif not isinstance(owner, collections.Iterable): owner = [owner] if not own: own = range(len(owner)) if isinstance(own, string_types): own = [own] elif not isinstance(own, collections.Iterable): own = [own] for lineowner, lineown in zip(owner, own): if isinstance(lineowner, string_types): lownerref = getattr(self._owner.lines, lineowner) else: lownerref = self._owner.lines[lineowner] if isinstance(lineown, string_types): lownref = getattr(self.lines, lineown) else: lownref = self.lines[lineown] lownref.addbinding(lownerref) return self # Alias which may be more readable bind2lines = bindlines bind2line = bind2lines def _next(self): clock_len = self._clk_update() for indicator in self._lineiterators[LineIterator.IndType]: indicator._next() self._notify() if self._ltype == LineIterator.StratType: # supporting datas with different lengths minperstatus = self._getminperstatus() if minperstatus < 0: self.next() elif minperstatus == 0: self.nextstart() # only called for the 1st value else: self.prenext() else: # assume indicators and others operate on same length datas # although the above operation can be generalized if clock_len > self._minperiod: self.next() elif clock_len == self._minperiod: self.nextstart() # only called for the 1st value elif clock_len: self.prenext() def _clk_update(self): clock_len = len(self._clock) if clock_len != len(self): self.forward() return clock_len def _once(self): self.forward(size=self._clock.buflen()) for indicator in self._lineiterators[LineIterator.IndType]: indicator._once() for observer in self._lineiterators[LineIterator.ObsType]: observer.forward(size=self.buflen()) for data in self.datas: data.home() for indicator in self._lineiterators[LineIterator.IndType]: indicator.home() for observer in self._lineiterators[LineIterator.ObsType]: observer.home() self.home() # These 3 remain empty for a strategy and therefore play no role # because a strategy will always be executed on a next basis # indicators are each called with its min period self.preonce(0, self._minperiod - 1) self.oncestart(self._minperiod - 1, self._minperiod) self.once(self._minperiod, self.buflen()) for line in self.lines: line.oncebinding() def preonce(self, start, end): pass def oncestart(self, start, end): self.once(start, end) def once(self, start, end): pass def prenext(self): ''' This method will be called before the minimum period of all datas/indicators have been meet for the strategy to start executing ''' pass def nextstart(self): ''' This method will be called once, exactly when the minimum period for all datas/indicators have been meet. The default behavior is to call next ''' # Called once for 1st full calculation - defaults to regular next self.next() def next(self): ''' This method will be called for all remaining data points when the minimum period for all datas/indicators have been meet. ''' pass def _addnotification(self, *args, **kwargs): pass def _notify(self): pass def _plotinit(self): pass def qbuffer(self, savemem=0): if savemem: for line in self.lines: line.qbuffer() # If called, anything under it, must save for obj in self._lineiterators[self.IndType]: obj.qbuffer(savemem=1) # Tell datas to adjust buffer to minimum period for data in self.datas: data.minbuffer(self._minperiod)
Ancestors
Subclasses
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Methods
def addindicator(self, indicator)
-
Expand source code
def addindicator(self, indicator): # store in right queue self._lineiterators[indicator._ltype].append(indicator) # use getattr because line buffers don't have this attribute if getattr(indicator, '_nextforce', False): # the indicator needs runonce=False o = self while o is not None: if o._ltype == LineIterator.StratType: o.cerebro._disable_runonce() break o = o._owner # move up the hierarchy
def bind2line(self, owner=None, own=None)
-
Expand source code
def bindlines(self, owner=None, own=None): if not owner: owner = 0 if isinstance(owner, string_types): owner = [owner] elif not isinstance(owner, collections.Iterable): owner = [owner] if not own: own = range(len(owner)) if isinstance(own, string_types): own = [own] elif not isinstance(own, collections.Iterable): own = [own] for lineowner, lineown in zip(owner, own): if isinstance(lineowner, string_types): lownerref = getattr(self._owner.lines, lineowner) else: lownerref = self._owner.lines[lineowner] if isinstance(lineown, string_types): lownref = getattr(self.lines, lineown) else: lownref = self.lines[lineown] lownref.addbinding(lownerref) return self
def bind2lines(self, owner=None, own=None)
-
Expand source code
def bindlines(self, owner=None, own=None): if not owner: owner = 0 if isinstance(owner, string_types): owner = [owner] elif not isinstance(owner, collections.Iterable): owner = [owner] if not own: own = range(len(owner)) if isinstance(own, string_types): own = [own] elif not isinstance(own, collections.Iterable): own = [own] for lineowner, lineown in zip(owner, own): if isinstance(lineowner, string_types): lownerref = getattr(self._owner.lines, lineowner) else: lownerref = self._owner.lines[lineowner] if isinstance(lineown, string_types): lownref = getattr(self.lines, lineown) else: lownref = self.lines[lineown] lownref.addbinding(lownerref) return self
def bindlines(self, owner=None, own=None)
-
Expand source code
def bindlines(self, owner=None, own=None): if not owner: owner = 0 if isinstance(owner, string_types): owner = [owner] elif not isinstance(owner, collections.Iterable): owner = [owner] if not own: own = range(len(owner)) if isinstance(own, string_types): own = [own] elif not isinstance(own, collections.Iterable): own = [own] for lineowner, lineown in zip(owner, own): if isinstance(lineowner, string_types): lownerref = getattr(self._owner.lines, lineowner) else: lownerref = self._owner.lines[lineowner] if isinstance(lineown, string_types): lownref = getattr(self.lines, lineown) else: lownref = self.lines[lineown] lownref.addbinding(lownerref) return self
def getindicators(self)
-
Expand source code
def getindicators(self): return self._lineiterators[LineIterator.IndType]
def getindicators_lines(self)
-
Expand source code
def getindicators_lines(self): return [x for x in self._lineiterators[LineIterator.IndType] if hasattr(x.lines, 'getlinealiases')]
def getobservers(self)
-
Expand source code
def getobservers(self): return self._lineiterators[LineIterator.ObsType]
def next(self)
-
This method will be called for all remaining data points when the minimum period for all datas/indicators have been meet.
Expand source code
def next(self): ''' This method will be called for all remaining data points when the minimum period for all datas/indicators have been meet. ''' pass
def nextstart(self)
-
This method will be called once, exactly when the minimum period for all datas/indicators have been meet. The default behavior is to call next
Expand source code
def nextstart(self): ''' This method will be called once, exactly when the minimum period for all datas/indicators have been meet. The default behavior is to call next ''' # Called once for 1st full calculation - defaults to regular next self.next()
def prenext(self)
-
This method will be called before the minimum period of all datas/indicators have been meet for the strategy to start executing
Expand source code
def prenext(self): ''' This method will be called before the minimum period of all datas/indicators have been meet for the strategy to start executing ''' pass
Inherited members
class MetaLineIterator (*args, **kwargs)
-
Dirty job manager for a LineSeries
-
During new (class creation), it reads "lines", "plotinfo", "plotlines" class variable definitions and turns them into Classes of type Lines or AutoClassInfo (plotinfo/plotlines)
-
During "new" (instance creation) the lines/plotinfo/plotlines classes are substituted in the instance with instances of the aforementioned classes and aliases are added for the "lines" held in the "lines" instance
Additionally and for remaining kwargs, these are matched against args in plotinfo and if existent are set there and removed from kwargs
Remember that this Metaclass has a MetaParams (from metabase) as root class and therefore "params" defined for the class have been removed from kwargs at an earlier state
Expand source code
class MetaLineIterator(LineSeries.__class__): def donew(cls, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).donew(*args, **kwargs) # Prepare to hold children that need to be calculated and # influence minperiod - Moved here to support LineNum below _obj._lineiterators = collections.defaultdict(list) # Scan args for datas ... if none are found, # use the _owner (to have a clock) mindatas = _obj._mindatas lastarg = 0 _obj.datas = [] for arg in args: if isinstance(arg, LineRoot): _obj.datas.append(LineSeriesMaker(arg)) elif not mindatas: break # found not data and must not be collected else: try: _obj.datas.append(LineSeriesMaker(LineNum(arg))) except: # Not a LineNum and is not a LineSeries - bail out break mindatas = max(0, mindatas - 1) lastarg += 1 newargs = args[lastarg:] # If no datas have been passed to an indicator ... use the # main datas of the owner, easing up adding "self.data" ... if not _obj.datas and isinstance(_obj, (IndicatorBase, ObserverBase)): _obj.datas = _obj._owner.datas[0:mindatas] # Create a dictionary to be able to check for presence # lists in python use "==" operator when testing for presence with "in" # which doesn't really check for presence but for equality _obj.ddatas = {x: None for x in _obj.datas} # For each found data add access member - # for the first data 2 (data and data0) if _obj.datas: _obj.data = data = _obj.datas[0] for l, line in enumerate(data.lines): linealias = data._getlinealias(l) if linealias: setattr(_obj, 'data_%s' % linealias, line) setattr(_obj, 'data_%d' % l, line) for d, data in enumerate(_obj.datas): setattr(_obj, 'data%d' % d, data) for l, line in enumerate(data.lines): linealias = data._getlinealias(l) if linealias: setattr(_obj, 'data%d_%s' % (d, linealias), line) setattr(_obj, 'data%d_%d' % (d, l), line) # Parameter values have now been set before __init__ _obj.dnames = DotDict([(d._name, d) for d in _obj.datas if getattr(d, '_name', '')]) return _obj, newargs, kwargs def dopreinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopreinit(_obj, *args, **kwargs) # if no datas were found use, use the _owner (to have a clock) _obj.datas = _obj.datas or [_obj._owner] # 1st data source is our ticking clock _obj._clock = _obj.datas[0] # To automatically set the period Start by scanning the found datas # No calculation can take place until all datas have yielded "data" # A data could be an indicator and it could take x bars until # something is produced _obj._minperiod = \ max([x._minperiod for x in _obj.datas] or [_obj._minperiod]) # The lines carry at least the same minperiod as # that provided by the datas for line in _obj.lines: line.addminperiod(_obj._minperiod) return _obj, args, kwargs def dopostinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopostinit(_obj, *args, **kwargs) # my minperiod is as large as the minperiod of my lines _obj._minperiod = max([x._minperiod for x in _obj.lines]) # Recalc the period _obj._periodrecalc() # Register (my)self as indicator to owner once # _minperiod has been calculated if _obj._owner is not None: _obj._owner.addindicator(_obj) return _obj, args, kwargs
Ancestors
- MetaLineSeries
- MetaLineRoot
- MetaParams
- MetaBase
- builtins.type
Subclasses
Methods
def dopostinit(cls, _obj, *args, **kwargs)
-
Expand source code
def dopostinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopostinit(_obj, *args, **kwargs) # my minperiod is as large as the minperiod of my lines _obj._minperiod = max([x._minperiod for x in _obj.lines]) # Recalc the period _obj._periodrecalc() # Register (my)self as indicator to owner once # _minperiod has been calculated if _obj._owner is not None: _obj._owner.addindicator(_obj) return _obj, args, kwargs
def dopreinit(cls, _obj, *args, **kwargs)
-
Expand source code
def dopreinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopreinit(_obj, *args, **kwargs) # if no datas were found use, use the _owner (to have a clock) _obj.datas = _obj.datas or [_obj._owner] # 1st data source is our ticking clock _obj._clock = _obj.datas[0] # To automatically set the period Start by scanning the found datas # No calculation can take place until all datas have yielded "data" # A data could be an indicator and it could take x bars until # something is produced _obj._minperiod = \ max([x._minperiod for x in _obj.datas] or [_obj._minperiod]) # The lines carry at least the same minperiod as # that provided by the datas for line in _obj.lines: line.addminperiod(_obj._minperiod) return _obj, args, kwargs
Inherited members
-
class MultiCoupler
-
Base class for LineXXX instances that hold more than one line
Expand source code
class MultiCoupler(LineIterator): _ltype = LineIterator.IndType def __init__(self): super(MultiCoupler, self).__init__() self.dlen = 0 self.dsize = self.fullsize() # shorcut for number of lines self.dvals = [float('NaN')] * self.dsize def next(self): if len(self.data) > self.dlen: self.dlen += 1 for i in range(self.dsize): self.dvals[i] = self.data.lines[i][0] for i in range(self.dsize): self.lines[i][0] = self.dvals[i]
Ancestors
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class ObserverBase (*args, **kwargs)
-
Base class for LineXXX instances that hold more than one line
Expand source code
class ObserverBase(DataAccessor): pass
Ancestors
Subclasses
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members
class SingleCoupler (cdata, clock=None)
-
Base class derived from LineBuffer intented to defined the minimum interface to make it compatible with a LineIterator by providing operational _next and _once interfaces.
The metaclass does the dirty job of calculating minperiods and registering
Expand source code
class SingleCoupler(LineActions): def __init__(self, cdata, clock=None): super(SingleCoupler, self).__init__() self._clock = clock if clock is not None else self._owner self.cdata = cdata self.dlen = 0 self.val = float('NaN') def next(self): if len(self.cdata) > self.dlen: self.val = self.cdata[0] self.dlen += 1 self[0] = self.val
Ancestors
Class variables
var frompackages
var packages
var params
Inherited members
LineActions
:addbinding
addminperiod
advance
backwards
bind2line
bind2lines
buflen
dt
extend
forward
get
getzero
getzeroval
home
incminperiod
minbuffer
next
nextstart
once
oncebinding
oncestart
plot
prenext
preonce
qbuffer
reset
set
setminperiod
tm
tm2datetime
tm2dtime
tm_eq
tm_ge
tm_gt
tm_le
tm_lt
tm_raw
updateminperiod
class StrategyBase (*args, **kwargs)
-
Base class for LineXXX instances that hold more than one line
Expand source code
class StrategyBase(DataAccessor): pass
Ancestors
Subclasses
Class variables
var alias
var aliased
var frompackages
var linealias
var packages
var params
var plotinfo
var plotlines
Inherited members