Module backtrader.analyzers.positions

Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)


import backtrader as bt


class PositionsValue(bt.Analyzer):
    '''This analyzer reports the value of the positions of the current set of
    datas

    Params:

      - timeframe (default: ``None``)
        If ``None`` then the timeframe of the 1st data of the system will be
        used

      - compression (default: ``None``)

        Only used for sub-day timeframes to for example work on an hourly
        timeframe by specifying "TimeFrame.Minutes" and 60 as compression

        If ``None`` then the compression of the 1st data of the system will be
        used

      - headers (default: ``False``)

        Add an initial key to the dictionary holding the results with the names
        of the datas ('Datetime' as key

      - cash (default: ``False``)

        Include the actual cash as an extra position (for the header 'cash'
        will be used as name)

    Methods:

      - get_analysis

        Returns a dictionary with returns as values and the datetime points for
        each return as keys
    '''
    params = (
        ('headers',  False),
        ('cash', False),
    )

    def start(self):
        if self.p.headers:
            headers = [d._name or 'Data%d' % i
                       for i, d in enumerate(self.datas)]
            self.rets['Datetime'] = headers + ['cash'] * self.p.cash

        tf = min(d._timeframe for d in self.datas)
        self._usedate = tf >= bt.TimeFrame.Days

    def next(self):
        pvals = [self.strategy.broker.get_value([d]) for d in self.datas]
        if self.p.cash:
            pvals.append(self.strategy.broker.get_cash())

        if self._usedate:
            self.rets[self.strategy.datetime.date()] = pvals
        else:
            self.rets[self.strategy.datetime.datetime()] = pvals

Classes

class PositionsValue (*args, **kwargs)

This analyzer reports the value of the positions of the current set of datas

Params

  • timeframe (default: None) If None then the timeframe of the 1st data of the system will be used

  • compression (default: None)

Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression

If None then the compression of the 1st data of the system will be used

  • headers (default: False)

Add an initial key to the dictionary holding the results with the names of the datas ('Datetime' as key

  • cash (default: False)

Include the actual cash as an extra position (for the header 'cash' will be used as name)

Methods

  • get_analysis

Returns a dictionary with returns as values and the datetime points for each return as keys

Expand source code
class PositionsValue(bt.Analyzer):
    '''This analyzer reports the value of the positions of the current set of
    datas

    Params:

      - timeframe (default: ``None``)
        If ``None`` then the timeframe of the 1st data of the system will be
        used

      - compression (default: ``None``)

        Only used for sub-day timeframes to for example work on an hourly
        timeframe by specifying "TimeFrame.Minutes" and 60 as compression

        If ``None`` then the compression of the 1st data of the system will be
        used

      - headers (default: ``False``)

        Add an initial key to the dictionary holding the results with the names
        of the datas ('Datetime' as key

      - cash (default: ``False``)

        Include the actual cash as an extra position (for the header 'cash'
        will be used as name)

    Methods:

      - get_analysis

        Returns a dictionary with returns as values and the datetime points for
        each return as keys
    '''
    params = (
        ('headers',  False),
        ('cash', False),
    )

    def start(self):
        if self.p.headers:
            headers = [d._name or 'Data%d' % i
                       for i, d in enumerate(self.datas)]
            self.rets['Datetime'] = headers + ['cash'] * self.p.cash

        tf = min(d._timeframe for d in self.datas)
        self._usedate = tf >= bt.TimeFrame.Days

    def next(self):
        pvals = [self.strategy.broker.get_value([d]) for d in self.datas]
        if self.p.cash:
            pvals.append(self.strategy.broker.get_cash())

        if self._usedate:
            self.rets[self.strategy.datetime.date()] = pvals
        else:
            self.rets[self.strategy.datetime.datetime()] = pvals

Ancestors

Class variables

var frompackages
var packages
var params

Inherited members