Module backtrader.analyzers.positions
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import backtrader as bt
class PositionsValue(bt.Analyzer):
'''This analyzer reports the value of the positions of the current set of
datas
Params:
- timeframe (default: ``None``)
If ``None`` then the timeframe of the 1st data of the system will be
used
- compression (default: ``None``)
Only used for sub-day timeframes to for example work on an hourly
timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If ``None`` then the compression of the 1st data of the system will be
used
- headers (default: ``False``)
Add an initial key to the dictionary holding the results with the names
of the datas ('Datetime' as key
- cash (default: ``False``)
Include the actual cash as an extra position (for the header 'cash'
will be used as name)
Methods:
- get_analysis
Returns a dictionary with returns as values and the datetime points for
each return as keys
'''
params = (
('headers', False),
('cash', False),
)
def start(self):
if self.p.headers:
headers = [d._name or 'Data%d' % i
for i, d in enumerate(self.datas)]
self.rets['Datetime'] = headers + ['cash'] * self.p.cash
tf = min(d._timeframe for d in self.datas)
self._usedate = tf >= bt.TimeFrame.Days
def next(self):
pvals = [self.strategy.broker.get_value([d]) for d in self.datas]
if self.p.cash:
pvals.append(self.strategy.broker.get_cash())
if self._usedate:
self.rets[self.strategy.datetime.date()] = pvals
else:
self.rets[self.strategy.datetime.datetime()] = pvals
Classes
class PositionsValue (*args, **kwargs)
-
This analyzer reports the value of the positions of the current set of datas
Params
-
timeframe (default:
None
) IfNone
then the timeframe of the 1st data of the system will be used -
compression (default:
None
)
Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If
None
then the compression of the 1st data of the system will be used- headers (default:
False
)
Add an initial key to the dictionary holding the results with the names of the datas ('Datetime' as key
- cash (default:
False
)
Include the actual cash as an extra position (for the header 'cash' will be used as name)
Methods
- get_analysis
Returns a dictionary with returns as values and the datetime points for each return as keys
Expand source code
class PositionsValue(bt.Analyzer): '''This analyzer reports the value of the positions of the current set of datas Params: - timeframe (default: ``None``) If ``None`` then the timeframe of the 1st data of the system will be used - compression (default: ``None``) Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression If ``None`` then the compression of the 1st data of the system will be used - headers (default: ``False``) Add an initial key to the dictionary holding the results with the names of the datas ('Datetime' as key - cash (default: ``False``) Include the actual cash as an extra position (for the header 'cash' will be used as name) Methods: - get_analysis Returns a dictionary with returns as values and the datetime points for each return as keys ''' params = ( ('headers', False), ('cash', False), ) def start(self): if self.p.headers: headers = [d._name or 'Data%d' % i for i, d in enumerate(self.datas)] self.rets['Datetime'] = headers + ['cash'] * self.p.cash tf = min(d._timeframe for d in self.datas) self._usedate = tf >= bt.TimeFrame.Days def next(self): pvals = [self.strategy.broker.get_value([d]) for d in self.datas] if self.p.cash: pvals.append(self.strategy.broker.get_cash()) if self._usedate: self.rets[self.strategy.datetime.date()] = pvals else: self.rets[self.strategy.datetime.datetime()] = pvals
Ancestors
Class variables
var frompackages
var packages
var params
Inherited members
-