Module backtrader.analyzers.periodstats

Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)


import backtrader as bt
from backtrader.utils.py3 import itervalues
from backtrader.mathsupport import average, standarddev
from . import TimeReturn


__all__ = ['PeriodStats']


class PeriodStats(bt.Analyzer):
    '''Calculates basic statistics for given timeframe

    Params:

      - ``timeframe`` (default: ``Years``)
        If ``None`` the ``timeframe`` of the 1st data in the system will be
        used

        Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no
        time constraints

      - ``compression`` (default: ``1``)

        Only used for sub-day timeframes to for example work on an hourly
        timeframe by specifying "TimeFrame.Minutes" and 60 as compression

        If ``None`` then the compression of the 1st data of the system will be
        used

      - ``fund`` (default: ``None``)

        If ``None`` the actual mode of the broker (fundmode - True/False) will
        be autodetected to decide if the returns are based on the total net
        asset value or on the fund value. See ``set_fundmode`` in the broker
        documentation

        Set it to ``True`` or ``False`` for a specific behavior


    ``get_analysis`` returns a dictionary containing the keys:

      - ``average``
      - ``stddev``
      - ``positive``
      - ``negative``
      - ``nochange``
      - ``best``
      - ``worst``

    If the parameter ``zeroispos`` is set to ``True``, periods with no change
    will be counted as positive
    '''

    params = (
        ('timeframe', bt.TimeFrame.Years),
        ('compression', 1),
        ('zeroispos', False),
        ('fund', None),
    )

    def __init__(self):
        self._tr = TimeReturn(timeframe=self.p.timeframe,
                              compression=self.p.compression, fund=self.p.fund)

    def stop(self):
        trets = self._tr.get_analysis()  # dict key = date, value = ret
        pos = nul = neg = 0
        trets = list(itervalues(trets))
        for tret in trets:
            if tret > 0.0:
                pos += 1
            elif tret < 0.0:
                neg += 1
            else:
                if self.p.zeroispos:
                    pos += tret == 0.0
                else:
                    nul += tret == 0.0

        self.rets['average'] = avg = average(trets)
        self.rets['stddev'] = standarddev(trets, avg)

        self.rets['positive'] = pos
        self.rets['negative'] = neg
        self.rets['nochange'] = nul

        self.rets['best'] = max(trets)
        self.rets['worst'] = min(trets)

Classes

class PeriodStats

Calculates basic statistics for given timeframe

Params

  • timeframe (default: Years) If None the timeframe of the 1st data in the system will be used

Pass TimeFrame.NoTimeFrame to consider the entire dataset with no time constraints

  • compression (default: 1)

Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression

If None then the compression of the 1st data of the system will be used

  • fund (default: None)

If None the actual mode of the broker (fundmode - True/False) will be autodetected to decide if the returns are based on the total net asset value or on the fund value. See set_fundmode in the broker documentation

Set it to True or False for a specific behavior

get_analysis returns a dictionary containing the keys:

  • average
  • stddev
  • positive
  • negative
  • nochange
  • best
  • worst

If the parameter zeroispos is set to True, periods with no change will be counted as positive

Expand source code
class PeriodStats(bt.Analyzer):
    '''Calculates basic statistics for given timeframe

    Params:

      - ``timeframe`` (default: ``Years``)
        If ``None`` the ``timeframe`` of the 1st data in the system will be
        used

        Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no
        time constraints

      - ``compression`` (default: ``1``)

        Only used for sub-day timeframes to for example work on an hourly
        timeframe by specifying "TimeFrame.Minutes" and 60 as compression

        If ``None`` then the compression of the 1st data of the system will be
        used

      - ``fund`` (default: ``None``)

        If ``None`` the actual mode of the broker (fundmode - True/False) will
        be autodetected to decide if the returns are based on the total net
        asset value or on the fund value. See ``set_fundmode`` in the broker
        documentation

        Set it to ``True`` or ``False`` for a specific behavior


    ``get_analysis`` returns a dictionary containing the keys:

      - ``average``
      - ``stddev``
      - ``positive``
      - ``negative``
      - ``nochange``
      - ``best``
      - ``worst``

    If the parameter ``zeroispos`` is set to ``True``, periods with no change
    will be counted as positive
    '''

    params = (
        ('timeframe', bt.TimeFrame.Years),
        ('compression', 1),
        ('zeroispos', False),
        ('fund', None),
    )

    def __init__(self):
        self._tr = TimeReturn(timeframe=self.p.timeframe,
                              compression=self.p.compression, fund=self.p.fund)

    def stop(self):
        trets = self._tr.get_analysis()  # dict key = date, value = ret
        pos = nul = neg = 0
        trets = list(itervalues(trets))
        for tret in trets:
            if tret > 0.0:
                pos += 1
            elif tret < 0.0:
                neg += 1
            else:
                if self.p.zeroispos:
                    pos += tret == 0.0
                else:
                    nul += tret == 0.0

        self.rets['average'] = avg = average(trets)
        self.rets['stddev'] = standarddev(trets, avg)

        self.rets['positive'] = pos
        self.rets['negative'] = neg
        self.rets['nochange'] = nul

        self.rets['best'] = max(trets)
        self.rets['worst'] = min(trets)

Ancestors

Class variables

var frompackages
var packages
var params

Inherited members