Module backtrader.analyzers.periodstats
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import backtrader as bt
from backtrader.utils.py3 import itervalues
from backtrader.mathsupport import average, standarddev
from . import TimeReturn
__all__ = ['PeriodStats']
class PeriodStats(bt.Analyzer):
'''Calculates basic statistics for given timeframe
Params:
- ``timeframe`` (default: ``Years``)
If ``None`` the ``timeframe`` of the 1st data in the system will be
used
Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no
time constraints
- ``compression`` (default: ``1``)
Only used for sub-day timeframes to for example work on an hourly
timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If ``None`` then the compression of the 1st data of the system will be
used
- ``fund`` (default: ``None``)
If ``None`` the actual mode of the broker (fundmode - True/False) will
be autodetected to decide if the returns are based on the total net
asset value or on the fund value. See ``set_fundmode`` in the broker
documentation
Set it to ``True`` or ``False`` for a specific behavior
``get_analysis`` returns a dictionary containing the keys:
- ``average``
- ``stddev``
- ``positive``
- ``negative``
- ``nochange``
- ``best``
- ``worst``
If the parameter ``zeroispos`` is set to ``True``, periods with no change
will be counted as positive
'''
params = (
('timeframe', bt.TimeFrame.Years),
('compression', 1),
('zeroispos', False),
('fund', None),
)
def __init__(self):
self._tr = TimeReturn(timeframe=self.p.timeframe,
compression=self.p.compression, fund=self.p.fund)
def stop(self):
trets = self._tr.get_analysis() # dict key = date, value = ret
pos = nul = neg = 0
trets = list(itervalues(trets))
for tret in trets:
if tret > 0.0:
pos += 1
elif tret < 0.0:
neg += 1
else:
if self.p.zeroispos:
pos += tret == 0.0
else:
nul += tret == 0.0
self.rets['average'] = avg = average(trets)
self.rets['stddev'] = standarddev(trets, avg)
self.rets['positive'] = pos
self.rets['negative'] = neg
self.rets['nochange'] = nul
self.rets['best'] = max(trets)
self.rets['worst'] = min(trets)
Classes
class PeriodStats
-
Calculates basic statistics for given timeframe
Params
timeframe
(default:Years
) IfNone
thetimeframe
of the 1st data in the system will be used
Pass
TimeFrame.NoTimeFrame
to consider the entire dataset with no time constraintscompression
(default:1
)
Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If
None
then the compression of the 1st data of the system will be usedfund
(default:None
)
If
None
the actual mode of the broker (fundmode - True/False) will be autodetected to decide if the returns are based on the total net asset value or on the fund value. Seeset_fundmode
in the broker documentationSet it to
True
orFalse
for a specific behaviorget_analysis
returns a dictionary containing the keys:average
stddev
positive
negative
nochange
best
worst
If the parameter
zeroispos
is set toTrue
, periods with no change will be counted as positiveExpand source code
class PeriodStats(bt.Analyzer): '''Calculates basic statistics for given timeframe Params: - ``timeframe`` (default: ``Years``) If ``None`` the ``timeframe`` of the 1st data in the system will be used Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no time constraints - ``compression`` (default: ``1``) Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression If ``None`` then the compression of the 1st data of the system will be used - ``fund`` (default: ``None``) If ``None`` the actual mode of the broker (fundmode - True/False) will be autodetected to decide if the returns are based on the total net asset value or on the fund value. See ``set_fundmode`` in the broker documentation Set it to ``True`` or ``False`` for a specific behavior ``get_analysis`` returns a dictionary containing the keys: - ``average`` - ``stddev`` - ``positive`` - ``negative`` - ``nochange`` - ``best`` - ``worst`` If the parameter ``zeroispos`` is set to ``True``, periods with no change will be counted as positive ''' params = ( ('timeframe', bt.TimeFrame.Years), ('compression', 1), ('zeroispos', False), ('fund', None), ) def __init__(self): self._tr = TimeReturn(timeframe=self.p.timeframe, compression=self.p.compression, fund=self.p.fund) def stop(self): trets = self._tr.get_analysis() # dict key = date, value = ret pos = nul = neg = 0 trets = list(itervalues(trets)) for tret in trets: if tret > 0.0: pos += 1 elif tret < 0.0: neg += 1 else: if self.p.zeroispos: pos += tret == 0.0 else: nul += tret == 0.0 self.rets['average'] = avg = average(trets) self.rets['stddev'] = standarddev(trets, avg) self.rets['positive'] = pos self.rets['negative'] = neg self.rets['nochange'] = nul self.rets['best'] = max(trets) self.rets['worst'] = min(trets)
Ancestors
Class variables
var frompackages
var packages
var params
Inherited members