Module backtrader.analyzers.calmar
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import backtrader as bt
from . import TimeDrawDown
__all__ = ['Calmar']
class Calmar(bt.TimeFrameAnalyzerBase):
'''This analyzer calculates the CalmarRatio
timeframe which can be different from the one used in the underlying data
Params:
- ``timeframe`` (default: ``None``)
If ``None`` the ``timeframe`` of the 1st data in the system will be
used
Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no
time constraints
- ``compression`` (default: ``None``)
Only used for sub-day timeframes to for example work on an hourly
timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If ``None`` then the compression of the 1st data of the system will be
used
- *None*
- ``fund`` (default: ``None``)
If ``None`` the actual mode of the broker (fundmode - True/False) will
be autodetected to decide if the returns are based on the total net
asset value or on the fund value. See ``set_fundmode`` in the broker
documentation
Set it to ``True`` or ``False`` for a specific behavior
See also:
- https://en.wikipedia.org/wiki/Calmar_ratio
Methods:
- ``get_analysis``
Returns a OrderedDict with a key for the time period and the
corresponding rolling Calmar ratio
Attributes:
- ``calmar`` the latest calculated calmar ratio
'''
packages = ('collections', 'math',)
params = (
('timeframe', bt.TimeFrame.Months), # default in calmar
('period', 36),
('fund', None),
)
def __init__(self):
self._maxdd = TimeDrawDown(timeframe=self.p.timeframe,
compression=self.p.compression)
def start(self):
self._mdd = float('-inf')
self._values = collections.deque([float('Nan')] * self.p.period,
maxlen=self.p.period)
if self.p.fund is None:
self._fundmode = self.strategy.broker.fundmode
else:
self._fundmode = self.p.fund
if not self._fundmode:
self._values.append(self.strategy.broker.getvalue())
else:
self._values.append(self.strategy.broker.fundvalue)
def on_dt_over(self):
self._mdd = max(self._mdd, self._maxdd.maxdd)
if not self._fundmode:
self._values.append(self.strategy.broker.getvalue())
else:
self._values.append(self.strategy.broker.fundvalue)
rann = math.log(self._values[-1] / self._values[0]) / len(self._values)
self.calmar = calmar = rann / (self._mdd or float('Inf'))
self.rets[self.dtkey] = calmar
def stop(self):
self.on_dt_over() # update last values
Classes
class Calmar
-
This analyzer calculates the CalmarRatio timeframe which can be different from the one used in the underlying data
Params
timeframe
(default:None
) IfNone
thetimeframe
of the 1st data in the system will be used
Pass
TimeFrame.NoTimeFrame
to consider the entire dataset with no time constraintscompression
(default:None
)
Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression
If
None
then the compression of the 1st data of the system will be used - Nonefund
(default:None
)
If
None
the actual mode of the broker (fundmode - True/False) will be autodetected to decide if the returns are based on the total net asset value or on the fund value. Seeset_fundmode
in the broker documentationSet it to
True
orFalse
for a specific behaviorSee also:
Methods
get_analysis
Returns a OrderedDict with a key for the time period and the corresponding rolling Calmar ratio
Attributes
calmar
the latest calculated calmar ratio
Expand source code
class Calmar(bt.TimeFrameAnalyzerBase): '''This analyzer calculates the CalmarRatio timeframe which can be different from the one used in the underlying data Params: - ``timeframe`` (default: ``None``) If ``None`` the ``timeframe`` of the 1st data in the system will be used Pass ``TimeFrame.NoTimeFrame`` to consider the entire dataset with no time constraints - ``compression`` (default: ``None``) Only used for sub-day timeframes to for example work on an hourly timeframe by specifying "TimeFrame.Minutes" and 60 as compression If ``None`` then the compression of the 1st data of the system will be used - *None* - ``fund`` (default: ``None``) If ``None`` the actual mode of the broker (fundmode - True/False) will be autodetected to decide if the returns are based on the total net asset value or on the fund value. See ``set_fundmode`` in the broker documentation Set it to ``True`` or ``False`` for a specific behavior See also: - https://en.wikipedia.org/wiki/Calmar_ratio Methods: - ``get_analysis`` Returns a OrderedDict with a key for the time period and the corresponding rolling Calmar ratio Attributes: - ``calmar`` the latest calculated calmar ratio ''' packages = ('collections', 'math',) params = ( ('timeframe', bt.TimeFrame.Months), # default in calmar ('period', 36), ('fund', None), ) def __init__(self): self._maxdd = TimeDrawDown(timeframe=self.p.timeframe, compression=self.p.compression) def start(self): self._mdd = float('-inf') self._values = collections.deque([float('Nan')] * self.p.period, maxlen=self.p.period) if self.p.fund is None: self._fundmode = self.strategy.broker.fundmode else: self._fundmode = self.p.fund if not self._fundmode: self._values.append(self.strategy.broker.getvalue()) else: self._values.append(self.strategy.broker.fundvalue) def on_dt_over(self): self._mdd = max(self._mdd, self._maxdd.maxdd) if not self._fundmode: self._values.append(self.strategy.broker.getvalue()) else: self._values.append(self.strategy.broker.fundvalue) rann = math.log(self._values[-1] / self._values[0]) / len(self._values) self.calmar = calmar = rann / (self._mdd or float('Inf')) self.rets[self.dtkey] = calmar def stop(self): self.on_dt_over() # update last values
Ancestors
Class variables
var frompackages
var packages
var params
Methods
def on_dt_over(self)
-
Expand source code
def on_dt_over(self): self._mdd = max(self._mdd, self._maxdd.maxdd) if not self._fundmode: self._values.append(self.strategy.broker.getvalue()) else: self._values.append(self.strategy.broker.fundvalue) rann = math.log(self._values[-1] / self._values[0]) / len(self._values) self.calmar = calmar = rann / (self._mdd or float('Inf')) self.rets[self.dtkey] = calmar
Inherited members